Week 9
Learning Outcomes
First Lecture
- Functions of Random Variables
Second Lecture
- Sampling Distributions
Important Concepts
First Lecture
Functions of Random Variables
Method of Distribution Function
Let \(Y=g(X)\) be a function of a Random variable \(X\). The density function of \(Y\) can be found with the following steps:
- Find the region of \(Y\) in the \(X\) space.
- Find the region of \(Y\leq y\)
- Find \(F_Y(y)=P(Y\le y)\) by integrating over the region of \(Y\le y\)
- Find the density function \(f_Y(y)=\frac{dF_Y(y)}{dy}\)
Method of Transformations
Let \(Y=g(X)\) be a function of a Random variable \(X\), if \(g(X)\) is either increasing or decreasing for all values of \(X\) such that \(f_X(x)>0\). Then the density function of \(Y=g(X)\) is given as
\[ f_Y(y) = f_X\{g^{-1}(y)\}\left|\frac{dh^{-1}(y)}{dy}\right| \]
Method of Moment Generating Functions
Let \(Y=g(X)\) be a function of a Random variable \(X\). Find the moment generating function \(M_Y(t)\). Compare \(M_Y(t)\) to known moment generating functions.
Second Lecture
Sampling Distributions
Observing Random Variables
When collecting a sample of \(n\), we tend to observe individual random variables: \(\{X_1, X_2, \cdots,X_n\}\).
Sum of Random Variables
Let \(X_i\), for \(i=1, \cdots, n\), be identically and independently distributed (iid) normal distribution with mean \(\mu\) and variance \(\sigma^2\). Let \(T=\sum_{i=1}^nX_i\) follow an normal distribution with mean \(\mu\) and variance \(n\sigma^2\).
Central Limit Theorem
Let \(X_1, X_2, \ldots, X_n\) be identical and independent distributed random variables with \(E(X_i)=\mu\) and \(Var(X_i) = \sigma²\). We define
\[ Y_n = \sqrt n \left(\frac{\bar X-\mu}{\sigma}\right) \mathrm{ where }\ \bar X = \frac{1}{n}\sum^n_{i=1}X_i. \]
Then, the distribution of the function \(Y_n\) converges to a standard normal distribution function as \(n\rightarrow \infty\).
Other Sampling Distributions
\(\chi^2\)-distribution
Let \(Z_1, Z_2,\ldots,Z_n \overset{iid}{\sim}N(0,1)\),
\[ \sum_{i=1}^nZ_i^2\sim\chi^2_n. \]
Let \(X_1, X_2,\ldots,X_n \overset{iid}{\sim}N(\mu,\sigma^2)\), \(S^2 = \frac{1}{n-1}\sum^n_{i=1}(X_i-\bar X)^2\), and \(\bar X \perp S^2\); therefore:
\[ \frac{(n-1)S^2}{\sigma^2} \sim \chi^2_{n-1}. \]
t-distribution
Let \(Z\sim N(0,1)\), \(W\sim \chi^2_\nu\), \(Z\perp W\); therefore:
\[ T=\frac{Z}{\sqrt{W/\nu}} \sim t_\nu \]
F-distribution
Let \(W_1\sim\chi^2_{\nu_1}\) \(W_2\sim\chi^2_{\nu_2}\), and \(W_1\perp W_2\); therefore:
\[ F = \frac{W_1/\nu_1}{W_2/\nu_2}\sim F_{\nu_1,\nu_2} \]
Resources
First Lecture
Slides | Videos | Notes |
---|---|---|
Slides | Video 001 Video 002 | Notes |
Second Lecture
Slides | Videos | Notes |
---|---|---|
Slides | Video 001 Video 002 | Notes |