Functions of Random Variables

Learning Outcomes

- Functions of Random Variables
- Finding PDFs using the distribution function
- Finding the PDF of a function of random variables
- Using Moment Generating Functions

Function of Random Variables

Function of Random Variables

$$
\begin{aligned}
& x \sim F(\theta) \quad y \sim G\left(\theta^{*}\right) \\
& z=x+y \quad\binom{x}{y} \sim F(\theta) \\
& \hat{R} \cdot \quad z \sim H\left(\theta^{+}\right)
\end{aligned}
$$

$$
\begin{aligned}
& \bar{X}=\frac{1}{n} \sum_{i=1}^{n} x_{i} \quad \bar{Y}=\frac{1}{n} \sum_{i=1}^{n} y_{i} \\
& x_{i} \sim F(\theta) \quad y_{i} \sim F\left(\theta^{\prime}\right) \\
& \bar{X} \sim G^{\prime}\left(\theta^{+}\right)_{0.5} \quad 0.5 \quad \bar{y} \sim G\left(\theta^{*}\right) \\
& z=\frac{0.5}{x}-\frac{0.5}{y} \quad P(|z|=0)=0.82 \\
& z \sim H(\theta) \quad P \backslash>\|=0.92
\end{aligned}
$$

Obtaining the PDFs

Using the Distribution Function

Let there be a random variable X with a known distribution function $F_{X}(x)$, the density function for the random variable $Y=g(X)$ can be found with the following steps

1. Find the region of Y in the space of X, find $g^{-1}(y)$
2. Find the region of $Y \leq y$
3. Find $F_{Y}(y)=P(Y \leq y)$ using the probability density function of X over region $Y \leq y$
4. Find $\underbrace{f_{Y}(y)}$ by differentiating $F_{Y}(y)$

Example 1

Let X have the following probability density function:

$$
f_{X}(x)=\left\{\begin{array}{cl}
2 x & 0 \leq x \leq 1 \\
0 & \text { otherwise }
\end{array}\right.
$$

Find the probability density function of $Y=3 X-1$?
(1) $-1 \leq y \leq 2$
(2) $y=3 x-1$

$$
x=\frac{y+1}{3}
$$

(3)

$$
\begin{aligned}
& P(y \leq y)=P(3 x-1 \leq y) \\
& P\left(x \leq \frac{y+1}{3}\right)=\int_{0}^{\frac{y+1}{3}} 2 x d x \\
& \left.X^{2}\right|_{0} ^{\frac{y+1}{3}}=\frac{(y+1)^{2}}{9}=F(y) \\
& f(y)=\frac{2(y+1)}{9} \quad-1 \leq y \leq 2
\end{aligned}
$$

Using the PDF

Let there be a random variable X with a known distribution function $F_{X}(x)$, if the random variable $Y=g(X)$ is either increasing or decreasing, than the probability density function can be found as

Example 2
Let X have the following probability density function:

$$
f_{X}(x)=\left\{\begin{array}{cc}
\frac{3}{2} x^{2}+x & 0 \leq y \leq 1 \\
0 & \text { otherwise }
\end{array}\right.
$$

Find the probability density function of $Y=5-(X / 2)$?
(1) $x=(y-5)(-2)=-2 y+10 \in g^{-1}(y)$
(2) -2 $\quad F_{x}\left(g^{\prime}(y)\right)\left|\frac{d g^{-1}(y)}{d y}\right|$
(3) $A_{y}=\left[\frac{3}{2}(-2 y+10)^{2}-2 y+10\right] \cdot|-2|$

$$
F(y)=3(-2 y+10)^{2}-4 y+20
$$

MGF Properties: Linearity

Let X follow a distribution f, with the an MGF $M_{X}(t)$, the MGF of $Y=a X+b$ is given as

$$
M_{Y}(t)=e^{t b} M_{X}(a t)
$$

MGF Properties: Uniqueness
Let X and Y have the following distributions $F_{X}(x)$ and $F_{Y}(y)$ and MGFs $M_{X}(t)$ and $M_{Y}(t)$, respectively. X and Y have the same distribution $F_{X}(x)=F_{Y}(y)$ if and only if

$$
\begin{aligned}
& M_{X}(t)=M_{Y}(t) . \\
& \quad M_{x}=\mu_{y} \Leftrightarrow F_{x}=F_{y}
\end{aligned}
$$

$X Y$ are the sane $R U$

Using the MGF

Using the uniqueness property of Moment Generating Functions, for a random variable X with a known distribution function $F_{X}(x)$ and random variable $Y=g(X)$, the distribution of Y can be found by:

1. Find the moment generating function of $Y, M_{Y}(t)$.
2. Compare $M_{Y}(t)$, with known moment generating functions. If $M_{Y}(t)=M_{V}(t)$, for all values t, then Y and V have identical distributions.

Example 3
Let X follow a normal distribution with mean μ and variance σ^{2}. Find the distribution of $Z=\underbrace{\frac{X-\mu}{\sigma}} . \quad Z=\frac{1}{\sigma} X-\mu / \sigma$
Distinction

$$
\begin{aligned}
& M_{z}(t)=e^{-\mu_{\sigma} t} \mu_{x}\left(\frac{1}{\sigma} t\right) \\
& M_{z}(t)=e^{t / 2} \varlimsup_{z \sim N(0,1)} \\
& \underbrace{\mu_{v(t)}}_{\mu=0}=\underbrace{e^{\mu t+\frac{\sigma^{2} t^{2}}{2}}}_{\sigma^{2}=1} \\
& e^{0 t+\frac{1 t^{2}}{2}} \\
& e^{t^{2} / 2} \\
& \text { restated. Noma }
\end{aligned}
$$

Example 4
Let Z follow a standard normal distribution with mean 0 and variance 1 . Find the distribution of $Y=Z^{2}$

$$
\begin{aligned}
& z \sim N(0,1) \quad E \quad{ }^{z}\left(e^{t y}\right)=E\left(e^{t z^{2}}\right)=\int_{-\infty}^{\infty} e^{t t^{2}} \frac{1}{\sqrt{2 \pi}} e^{-z^{2} / 2} d z \\
& \frac{1}{\sqrt{2 \pi}} \int_{-\infty}^{\infty} e^{t t^{2}-t^{2} / 2} d z \Rightarrow \frac{1}{\sqrt{2 \pi}} \int_{-\infty}^{\infty} e^{-\frac{z^{2}}{2}(2 t+1)} d z \\
& \frac{1}{\sqrt{2 \pi}}\left[\sqrt{2 \pi} \sqrt{(2 t+)^{-1}}\right] \quad \int_{-\infty}^{\infty} e^{\frac{-x^{2}}{2 \sigma^{2}}} d x=\sqrt{2 \pi \sigma^{2}}
\end{aligned}
$$

$$
\begin{array}{cl}
M_{1}(t)=(2 t+1)^{-1 / 2} & \frac{1}{\sigma^{2}}=(2 t+1) \\
X^{2}(1) \quad M(t)=(2 t+1)^{-1 / 2} \sqrt{2 \pi}=(2 t+1)^{-1} \\
Y \sim X^{2}(1) &
\end{array}
$$

