Functions of Random Variables

Learning Outcomes

- Functions of Random Variables
- Finding PDFs using the distribution function
- Finding the PDF of a function of random variables
- Using Moment Generating Functions

Function of Random Variables

Function of Random Variables

Yr G(O) $\chi \sim F(0)$ $\begin{pmatrix} X \\ Y \end{pmatrix} \sim F(\theta)$ Z=X+Y $Z N H (\theta^{\dagger})$

 $= \frac{1}{n} \frac{z}{z} \frac{y}{z}$ $\overline{X} = \frac{1}{N} \frac{1}{2} \frac{1}{$ Y. 1F(0) $X_i \sim F(\Theta)$ J~G(0*) $X \sim G(0^*)$ 0.5 Z = X - Y $P(|Z|=0)=0.8^{2}$ Z~H(Q) P(D) = 0.82

Obtaining the PDFs

Using the Distribution Function

Let there be a random variable X with a known distribution function $F_X(x)$, the density function for the random variable Y = g(X) can be found with the following steps

- 1. Find the region of Y in the space of X, find $g^{-1}(y)$
- 2. Find the region of $Y \leq y$
- 3. Find $F_Y(y) = P(Y \le y)$ using the probability density function of X over region $Y \le y$
- 4. Find $f_Y(y)$ by differentiating $F_Y(y)$

Let *X* have the following probability density function:

$$f_X(x) = \begin{cases} 2x & 0 \le x \le 1\\ 0 & \text{otherwise} \end{cases}$$

Find the probability density function of Y = 3X - 1?

 $\begin{array}{c} \textcircled{2} \\ \swarrow \\ \chi = 3x - 1 \\ \chi = \frac{\chi + 1}{3} \end{array}$

(3) P(Y = y) = P(3X - 1 = Y) $P(X \leq \frac{Y + 1}{3}) = \int_{-1}^{Y + 1} 2x \, dx$

 $\begin{array}{ccc} X^{2} & \overline{3} \\ y & = & (Y+I)^{2} \\ y & = & \overline{Q} \end{array} \end{array} = \begin{array}{c} F(Y) \\ F(Y) \\ y & = & \overline{Q} \end{array}$

 $F(y) = \frac{2(y+1)}{q}$

Using the PDF

Let there be a random variable X with a known distribution function $F_X(x)$, if the random variable Y = g(X) is either increasing or decreasing, than the probability density function can be found as

Let *X* have the following probability density function:

$$f_X(x) = \begin{cases} \frac{3}{2}x^2 + x & 0 \le y \le 1\\ 0 & \text{otherwise} \end{cases}$$

Find the probability density function of Y = 5 - (X/2)? $D = X = (Y - 5)(-2) = -2Y + 10 = g^{-1}(y)$ $2 - 2 = F_X(g^{-1}(y)) | d g^{-1}(y) | d g^{-1}(y$

 $F(y) = 3(-2y+10)^7 - 4y+20$

×

1

MGF Properties: Linearity

Let X follow a distribution f, with the an MGF $M_X(t)$, the MGF of Y = aX + b is given as

$$M_Y(t) = e^{tb} M_X(at)$$

MGF Properties: Uniqueness

Let X and Y have the following distributions $F_X(x)$ and $F_Y(y)$ and MGFs $M_X(t)$ and $M_Y(t)$, respectively. X and Y have the same distribution $F_X(x) = F_Y(y)$ if and only if $M_X(t) = M_Y(t)$.

 $M_x = M_y \iff F_x = F_y$ X Y are the same RU

Using the MGF

Using the uniqueness property of Moment Generating Functions, for a random variable X with a known distribution function $F_X(x)$ and random variable Y = g(X), the distribution of Y can be found by:

- 1. Find the moment generating function of Y, $M_Y(t)$.
- 2. Compare $M_Y(t)$, with known moment generating functions. If $M_Y(t) = M_V(t)$, for all values t, then Y and V have identical distributions.

 $M_z(t) = l^{t/2},$

Let X follow a normal distribution with mean μ and variance σ^2 . Find the distribution of $Z = \frac{X-\mu}{\sigma}$. $\mathcal{Z} = \frac{1}{\sigma}X - \frac{M}{\sigma}$ $M_{\mathcal{Z}}(\ell) = e^{i\sigma \ell} M_{X}(\frac{1}{\sigma}\ell)$ $-\frac{M}{\sigma} e^{i\sigma \ell} \frac{M_{X}(\frac{1}{\sigma}\ell)}{\frac{M}{\sigma}\ell} + \frac{M_{U}(\frac{1}{\sigma}\ell)}{\frac{M}{\sigma}}$ $M_{\mathcal{Z}}(\ell) = e^{i\sigma \ell} M_{X}(\frac{1}{\sigma}\ell)$ $M_{X}(\ell) = e^{i\sigma \ell} M_{X}(\frac{1}{\sigma}\ell)$ $M_$

 $Z \Lambda N(0, 1)$

Nome

Let Z follow a standard normal distribution with mean 0 and variance 1. Find the distribution of $Y = Z^2$

 $Z \sim \mathcal{W}(0, 1) \qquad \forall \sim 7$ $E(e^{\pm Y}) = E(e^{\pm E}) = \int_{-\infty}^{\infty} e^{z^{2}} - z^{2}/z$ $E(e^{\pm Y}) = \int_{-\infty}^{\infty} e^{z^{2}} dz$ $\frac{1}{2\pi}\int_{A}^{\infty} \frac{\xi \xi^2 - \xi^2/2}{\xi \xi^2} d\xi = \frac{1}{2\pi}\int_{TT}^{T}\int_{A}^{T}\int_{C}^{T} \frac{\xi \xi^2}{\xi \xi^2} d\xi$ $\int_{-\infty}^{\infty} e^{-\frac{x^2}{26^2}} dx = \int_{-\infty}^{\infty} \int_{-\infty}^{\infty} \frac{1}{6^2} dx$ $\frac{1}{\sqrt{2\pi}} \left[\frac{1}{\sqrt{2\pi}} \left[\frac{1}{\sqrt{2\pi}} + 1 \right]^{-1} \right]$

 $M_{(t)} = (2t fl)^{-1/2}$

 $\frac{1}{T^{\prime L}} = (2 + 1)$ $\sigma^{2} = (2 \ell + 1)^{-1}$

 $\chi'(u) \qquad M(t) = (2t+1)^{-t/2} (111(2t+1))^{-1}$

