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Covariance
The covariance measures the average dependence between
multiple random variables. Let  be a random vector.
The variance of  is defined as
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Covariance
Let  and  be 2 random variables with mean  and ,
respectively. The covariance of  and  is defined as

If  and  are independent random variables, then
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Correlation
The correlation of  and  is defined asX1 X2
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MGF Property: Independence
Let  and  be independent random variables. Let

, the MGF of Z is
X Y

Z = X + Y
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iid Random Variables



Sampling Distributions
A sampling distribution is the distribution of a statistic. Many
known statistics have a known distribution.
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t-distribution
Let , , ; therefore:Z ∼ N(0, 1) W ∼ χ
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F-distribution
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Example
Let  , show that .

Note: the MGF of  is .
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Central Limit Theorem



Central Limit Theorem
Let  be identical and independent distributed
random variables with  and . We
define

Then, the distribution of the function  converges to a
standard normal distribution function as .
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Central Limit Theorem
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Example
Let , the MGF is . Find
the distribution of .

,… ,X1 Xn ∼
iid

χ
2
p M(t) = (1 − 2t)−p/2

X̄




