Week 10
Learning Outcomes
First Lecture
- Maximum Likelihood Estimator
Second Lecture
- MLE Properties
Important Concepts
Data
Let \(X_1,\ldots,X_n\overset{iid}{\sim}F(\boldsymbol \theta)\) where \(F(\cdot)\) is a known distribution function and \(\boldsymbol\theta\) is a vector of parameters. Let \(\boldsymbol X = (X_1,\ldots, X_n)^\mathrm{T}\), be the sample collected.
Maximum Likelihood Estimator
Likelihood Function
Using the joint pdf or pmf of the sample \(\boldsymbol X\), the likelihood function is a function of \(\boldsymbol \theta\), given the observed data \(\boldsymbol X =\boldsymbol x\), defined as
\[ L(\boldsymbol \theta|\boldsymbol x)=f(\boldsymbol x|\boldsymbol \theta) \]
If the data is iid, then
\[ f(\boldsymbol x|\boldsymbol \theta) = \prod^n_{i=1}f(x_i|\boldsymbol\theta) \]
Estimator
The maximum likelihood estimator are the estimates of \(\boldsymbol \theta\) that maximize \(L(\boldsymbol\theta)\).
Log-Likelihood Approach
If \(\ln\{L(\boldsymbol \theta)\}\) is monotone of \(\boldsymbol \theta\), then maximizing \(\ln\{L(\boldsymbol \theta)\}\) will yield the maximum likelihood estimators.
MLE Properties
Unbiasedness
Let \(X_1,\ldots,X_n\) be a random sample from a distribution with parameter \(\theta\). Let \(\hat \theta\) be an estimator for a parameter \(\theta\). Then \(\hat \theta\) is an unbiased estimator if \(E(\hat \theta) = \theta\). Otherwise, \(\hat\theta\) is considered biased.
Consistency
Let \(X_1,\ldots,X_n\) be a random sample from a distribution with parameter \(\theta\). The estimator \(\hat \theta\) is a consistent estimator of the \(\theta\) if
- \(E\{(\hat\theta-\theta)^2\}\rightarrow0\) as \(n\rightarrow \infty\)
- \(P(|\hat\theta-\theta|\ge \epsilon)\rightarrow0\) as \(n\rightarrow \infty\) for every \(\epsilon>0\)
Invariance Principle
If \(\hat \theta\) is an ML estimator of \(\theta\), then for any one-to-one function \(g\), the ML estimator for \(g(\theta)\) is \(g(\hat\theta)\).
Large Sample MLE Properties
Let \(X_1,\ldots,X_n\) be a random sample from a distribution with parameter \(\theta\). Let \(\hat \theta\) be the MLE estimator for a parameter \(\theta\). As \(n\rightarrow\infty\), then \(\hat \theta\) has a normal distribution with mean \(\theta\) and variance \(1/nI(\theta)\), where
\[ I(\theta)=E\left[-\frac{\partial^2}{\partial\theta^2}\log\{f(X;\theta)\}\right] \]
Resources
First Lecture
Slides | Videos | Notes |
---|---|---|
Slides | Video 001 Video 002 | Notes 001 Notes 002 |
Second Lecture
Slides | Videos | Notes |
---|---|---|
Slides | Video 001 Video 002 | Notes 001 Notes 002 |