Maximum Likelihood Estimators

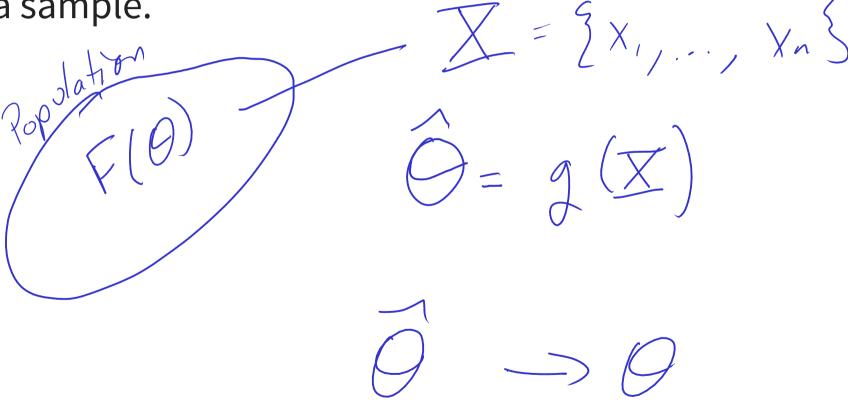
Learning Outcomes

- Maximum Likelihood Estimators
- Log-Likelihood Functions

Background Information

Estimators

An *estimator* is an operation computing the value of an estimate, that targets the parameter, using measurements from a sample.



Data $F(\cdot)$ \sim known distribution Let $X_1, \ldots, X_n \overset{iid}{\sim} F(\theta)$ where $F(\cdot)$ is a known distribution function and $oldsymbol{ heta}$ is a vector of parameters. Let $X = (X_1, \dots, X_n)^{\mathrm{T}}$, be the sample collected.

$$\widehat{O} = g(X)$$

Whet is g(.)

MLE

Likelihood Function

Using the joint pdf or pmf of the sample X, the likelihood function is a function of θ , given the observed data X=x, defined as

$$L(\boldsymbol{\theta}|\boldsymbol{x}) = f(\boldsymbol{x}|\boldsymbol{\theta})$$

If the data is iid, then

$$f(\boldsymbol{x}|\boldsymbol{\theta}) = \prod_{i=1}^{n} f(x_i|\boldsymbol{\theta})$$

$$F(x|\theta) = f(x|\theta)$$

$$L(\theta|x=x) = \prod_{i=1}^{n>0} f(x_i|\theta)$$

$$L'(0) = 0$$

$$L'(0)$$

$$L'(0)$$

$$L'(0)$$

Log-Likelihood Function

If $\ln\{L(\boldsymbol{\theta})\}$ is monotone of $\boldsymbol{\theta}$, then maximizing $\mathcal{E}(\boldsymbol{\theta}) = \ln\{L(\boldsymbol{\theta})\}$ will yield the maximum likelihood estimators.

$$\hat{Q} = \arg \max_{Q} L(Q)$$

$$\hat{Q} = \arg \max_{Q} |\eta(L(Q))|$$

Maximum log-Likelihood Estimator

The maximum likelihood estimator are the estimates of θ that maximize $\ell(\theta)$.

Example

Poisson Distribution

Let
$$X_1, \ldots, X_n \stackrel{iid}{\sim} \operatorname{Pois}(\lambda)$$
, show that the MLE of λ is \bar{x} .

$$P(x = x) = \underbrace{e^{-\lambda} x}_{x!}$$

$$L(\lambda | X = \bar{x}) = \underbrace{\int_{i=1}^{n} e^{-\lambda} x}_{x!}$$

$$P(x = x) = \underbrace{\int_{i=1}^{n} e^{-\lambda} x}_{x!}$$

$$X = \{X_1, \dots, X_n\}$$

$$= \sum_{i=1}^{n} |n(e^{-\lambda}) + |n(x^{i})| - |n(x_{i}!)| \qquad Gx^{2} + bx + c$$

$$Q(x) = \sum_{i=1}^{n} |n(x_{i}!)| - |n(x_{i}!)| \qquad In(x_{i}!)$$

$$Q(x) = -n + \frac{1}{\lambda} \sum_{i=1}^{n} x_{i} \qquad for \quad x_{i} = \sum_{i=1}^{n} x_{i}$$

$$Q(x) = -n + \frac{1}{\lambda} \sum_{i=1}^{n} x_{i} \qquad for \quad x_{i} = \sum_{i=1}^{n} x_{i}$$

$$Q(x) = -n + \frac{1}{\lambda} \sum_{i=1}^{n} x_{i} \qquad for \quad x_{i} = \sum_{i=1}^{n} x_{i}$$

$$Q(x) = -n + \frac{1}{\lambda} \sum_{i=1}^{n} x_{i} \qquad for \quad x_{i} = \sum_{i=1}^{n} x_{i}$$

$$Q(x) = -n + \frac{1}{\lambda} \sum_{i=1}^{n} x_{i} \qquad for \quad x_{i} = \sum_{i=1}^{n} x_{i}$$

$$Q(x) = -n + \frac{1}{\lambda} \sum_{i=1}^{n} x_{i} \qquad for \quad x_{i} = \sum_{i=1}^{n} x_{i}$$

$$Q(x) = -n + \frac{1}{\lambda} \sum_{i=1}^{n} x_{i} \qquad for \quad x_{i} = \sum_{i=1}^{n} x_{i}$$

$$Q(x) = -n + \frac{1}{\lambda} \sum_{i=1}^{n} x_{i} \qquad for \quad x_{i} = \sum_{i=1}^{n} x_{i}$$

$$Q(x) = -n + \frac{1}{\lambda} \sum_{i=1}^{n} x_{i} \qquad for \quad x_{i} = \sum_{i=1}^{n} x_{i}$$

Normal Distribution

Let $X_1, \ldots, X_n \stackrel{iid}{\sim} N(\mu, \sigma^2)$. Show that the MLE's of μ and σ^2 are \bar{x} and $\frac{n-1}{n}s^2$, respectively.

$$\left[\left(\mathcal{U}, \sigma^{2}\right) = \prod_{\substack{i=1\\ 2 \text{ if } \sigma^{2}}} e^{-\frac{\left(x_{i} - u\right)^{2}}{2\sigma^{2}}}\right]$$

$$\left[\left(\mathcal{U}, \sigma^{2}\right) = \sum_{i=1}^{n} \ln\left(\frac{1}{1210^{2}}e^{-\frac{\left(x_{i} - u\right)^{2}}{2\sigma^{2}}}\right)\right]$$

$$= \sum_{i=1}^{n} -\ln\left(\frac{1}{1210^{2}}e^{-\frac{\left(x_{i} - u\right)^{2}}{2\sigma^{2}}}\right)$$

$$= \sum_{i=1}^{n} -\ln\left(\frac{1}{1210^{2}}e^{-\frac{\left(x_{i} - u\right)^{2}}{2\sigma^{2}}}\right)$$

$$= -\frac{1}{2}\ln\left(\frac{1}{2110^{2}}e^{-\frac{\left(x_{i} - u\right)^{2}}{2\sigma^{2}}}\right)$$

$$= -\frac{1}{2}\ln\left(\frac{1}{2110^{2}}e^{-\frac{\left(x_{i} - u\right)^{2}}{2\sigma^{2}}}\right)$$

$$\frac{1}{100} = \frac{1}{100} \ln (2\pi 6^{2}) - \frac{1}{100} \sum_{i=1}^{n} (x_{i} - u)^{i}$$

$$\frac{1}{100} = 0 - \frac{1}{100} \sum_{i=1}^{n} 2(x_{i} - u)^{(-1)} du = \frac{1}{100} \sum_{i=1}^{n} 2(x_{i} - u)^{i}$$

$$\frac{1}{100} \sum_{i=1}^{n} 2(x_{i} - u) = 0 = 0$$

$$\frac{1}{100} \sum_{i=1}^{n} 2(x_{i} - u)^{i}$$

$$\frac{1}{100} \sum_{i=1}^{n} 2(x_{i} - u) = 0$$

$$\frac{1}{100} \sum_{i=1}^{n} 2(x_{i} - u)^{i}$$

$$\frac{1}{$$

Exponential Distribution

Let $X_1, \ldots, X_n \stackrel{iid}{\sim} Exp(\lambda)$. Find the MLE of λ