This leads to random variables.
A probability space is a triple:
\[ (\Omega, \mathcal{F}, P) \]
Sample Space (\(\Omega\))
All possible outcomes.
Sigma-Algebra (\(\mathcal{F}\))
Collection of events (subsets of \(\Omega\)) closed under complements and unions.
Probability Measure (\(P\))
Assigns probabilities to events.
Requirements:
\(\Omega \in \mathcal{F}\)
If \(A \in \mathcal{F}\), then \(A^\mathrm{C} \in \mathcal{F}\)
If \(A_1, A_2, \dots \in \mathcal{F}\), then \(\bigcup_{i=1}^\infty A_i \in \mathcal{F}\) and \(\bigcap_{i=1}^\infty A_i \in \mathcal{F}\)
When \(\Omega = \mathbb{R}\) (or an interval), we need a sigma-algebra of subsets to define probabilities.
Not every subset of \(\mathbb{R}\) is “nice” (some are too pathological).
The Borel sigma-field provides a rigorous and practical choice.
\[ (\infty, b] = \{x: -\infty < x \leq \infty \} \]
Non-negativity: \(P(A) \geq 0\)
Normalization: \(P(\Omega)=1\)
Countable additivity:
If \(A_1, A_2, \dots\) are disjoint,
\[
P\Big(\bigcup_{i=1}^\infty A_i\Big) = \sum_{i=1}^\infty P(A_i)
\]
Together: Probability Space = \((\Omega, \mathcal{F}, P)\)
\[ X: \Omega \to \mathbb{R} \]
For a random variable \(X\), the cumulative distribution function (CDF) is:
\[ F_X(x) = P(X \leq x), \quad x \in \mathbb{R} \]
Interpretation:
\(F_X(x)\) gives the probability that \(X\) takes a value less than or equal to \(x\).