Standard Errors

Linear and Generalized Linear Models

Learning Objectives

  • Standard Errors

    • Linear Regression

    • GLM

  • Sampling Distributions

Linear Regression

Standard Errors

  • Find the variance of the estimate

  • Find the information matrix

  • Use for Inference

Finding the Variance

Estimate for \(\sigma^2\)

\[ \hat \sigma^2 = \frac{1}{n-2} \sum^n_{i=1} (Y_i-\boldsymbol X_i^\mathrm T\hat{\boldsymbol \beta})^2 \]

Standard Errors of \(\beta\)’s

\[ SE(\hat\beta_0)=\sqrt{\frac{\sum^n_{i=1}x_i^2\hat\sigma^2}{n\sum^n_{i=1}(x_i-\bar x)^2}} \]

\[ SE(\hat\beta_1)=\sqrt\frac{\hat\sigma^2}{\sum^n_{i=1}(x_i-\bar x)^2} \]

Standard Errors Matrix Form

\[ Var(\hat {\boldsymbol \beta}) = (\boldsymbol X ^\mathrm T\boldsymbol X)^{-1} \hat \sigma^2 \]

Generalized Linear Models

Observed Information Matrix

Let \(\hat{\boldsymbol \beta} = \{\hat \beta_0, \hat \beta_1, \cdots, \hat \beta_p\}^\mathrm{T}\) be the MLE estimator for a parameter \(\boldsymbol \beta = \{\beta_0, \beta_1, \cdots, \beta_p\}^\mathrm{T}\). The observed information matrix is

\[ I(\hat{\boldsymbol \beta})=E\left[-\frac{\partial}{\partial \boldsymbol \beta}\frac{\partial}{\partial \boldsymbol \beta^\mathrm{T}}\log\{f(X;\boldsymbol \beta)\}\right] \]

\(I(\hat{\boldsymbol \beta})\) is a \((p+1)\times(p+1)\) matrix.

Standard Error of \(\hat \beta_j\)

\[ \mathrm{se}(\hat \beta_j) = \sqrt{I(\hat{\boldsymbol \beta})_{[j,j]}} \]

Sampling Distributions

Sampling Distributions of \(\hat \beta_j\)

\(\phi\) known

\[ \frac{\hat\beta_j - \beta_j}{\mathrm{se}(\hat\beta_j)} \sim N(0,1) \]

\(\phi\) unknown

\[ \frac{\hat\beta_j-\beta_j}{\mathrm{se}(\hat\beta_j)} \sim t_{n-p} \]

ANOVA Distribution

Source DF SS MS F
Model \(DFR=k-1\) \(SSR\) \(MSR=\frac{SSM}{DFR}\) \(\hat F=\frac{MSR}{MSE}\)
Error \(DFE=n-k\) \(SSE\) \(MSE=\frac{SSE}{DFE}\)
Total \(TDF=n-1\) \(TSS=SSR+SSE\)

\[ \hat F \sim F(DFR, DFE) \]

Likelihood Ratio Distribution

\[ \Lambda = \frac{L(\boldsymbol \beta_1)}{L(\boldsymbol \beta_0)} \sim \chi^2_\varphi \]