Homework 6

Published

April 7, 2023

Homework 6 is due 4/13/2023 at 11:59 PM. Submit your homework on Canvas as one PDF document.

  1. Let X1,X2,,XnX_1, X_2, \ldots, X_n be iid with the following density function

    f(x)={(θ+1)xθ0x1;θ>10elsewhere f(x) = \left\{\begin{array}{cc} (\theta + 1)x^\theta& 0\le x\le 1;\theta>-1 \\ 0 & \mathrm{elsewhere} \end{array} \right.

    Find the MLE for θ\theta.

  2. Let X1,X2,,XnX_1, X_2, \ldots, X_n be iid with the following density function

    f(x)={1Γ(α)θαxα1ex/θ0<x;0<θ0elsewhere f(x) = \left\{\begin{array}{cc} \frac{1}{\Gamma(\alpha)\theta^\alpha}x^{\alpha-1}e^{-x/\theta} & 0<x;0< \theta \\ 0 & \mathrm{elsewhere} \end{array} \right.

    where α>0\alpha>0 is known. Find the MLE for θ\theta.

  3. Let X1,,XniidGeo(p)X_1, \ldots, X_n\overset{iid}{\sim}Geo(p), what is the MLE of pp.