Homework 0

Published

January 23, 2023

Homework 0 is due on 2/3/2023. Please try to submit the assignment as 1 PDF if possible.

Problem 1

Take a selfie at the different office hours locations. You will need 3 images.

Problem 2

Take a selfie with another professor at CSUCI.

Problem 3

Take a selfie at the Learning Resource Center (LRC). Identify any tutors that can help you with Math 352

Problem 4

Set the equation to 0 and solve for xx:

  1. ln(x2+5)\ln(x^2+5)
  2. x2+6x+7x^2+6x+7
  3. 3x25x+23x^2-5x+2
  4. ex24e^{x^2-4}
  5. ln(5x)+3\ln(5x) + 3

Problem 5

Complete the following derivatives:

  1. f(x)=exf(x)=e^x

  2. f(x)=ex2f(x) = e^{x^2}

  3. f(x)=exx2f(x) = e^x x^2

  4. f(x)=ln(x2)x2+3xf(x) = \frac{\ln(x^2)}{x^2+3x}

  5. f(x)=ln(x)f(x) = \ln(x)

Problem 6

Complete the following integrals:

  1. 9x4dx\int-\frac{9}{x^4}dx
  2. x2ln(x)dx\int x^2\ln(x) dx
  3. x2xdx\int x^2\sqrt x dx
  4. x2ex3dx\int x^2e^{-x^3}dx
  5. 2x(x2+1)4dx\int2x(x^2+1)^4dx

Problem 7

Evaluate the following identities:

  1. (x+y)n(x+y)^n
  2. i=1ri\sum^\infty_{i=1}r^i; r<1|r|<1
  3. i=1mri\sum^{m}_{i=1}r^i; r<1|r|<1
  4. i=0xii!\sum^\infty_{i=0}\frac{x^i}{i!}
  5. n!(n1)!\frac{n!}{(n-1)!}

Footnotes

  1. Either convert to summation notation or evaluate the summation.↩︎