$$Y = \beta_0 + \beta_1 X_1 + \beta_2 X_2$$

$$Y = X^T \beta_1 + \epsilon$$

$$\xi \sim \mathcal{N}(0, \sigma^2)$$

$$Y \sim \mathcal{N}(X^T \beta_1, \sigma^2)$$

N

Dody Muss Mas X who span Lim beak longth $\sim N(\mu, r^2)$ GLM Populationsize ~ Pois (x) Can predictors explain the owtcome? (he talon site $r \mathcal{N}(u, 5^i)$ Species 10 cm homning bing ~ Bern (p) 10 cm Seagul Ping ~ Bern (p) Cosistic Reg Bin (1=1,p) zon dieh ~ Multinomio ((p) Im Conor X= 0.85 m $E(Y) = q^{-1}(X^T\beta)$ x = 25 mm X = 0.15 m

1 iteelihood 2 (B) + X B Prediction us Explanation Bayes Classifrers Naive Bayes Lihear Discrim Amely, sis

K Nevert Weiz bors

Learning Outcomes

- Exponential Family of Distributions
- Generalized Linear Models

9.

Exponential Family of Distributions

Exponential Family of Distributions

An exponential family of distributions are random variables that allow their probability density function to have the following form:

$$f(y;\theta,\phi) = a(y,\phi) \exp\left\{\frac{y\theta - \kappa(\theta)}{\phi}\right\}$$

$$G(y \phi) = \text{Normalizing constan}$$

$$\phi = \text{dispersion parameter further}$$

$$\Rightarrow \theta = \text{canonical link parameter/further}$$

$$K(\theta) = \log - \text{conventer}$$

$$\text{further}$$

Canonical Parameter

The canonical parameter represents the relationship between the random variable and the $E(Y) = \mu$

$$N = X^T P = g(u)$$

Normal Distribution $f(x) = a(x; \emptyset)$ $e^{\frac{x\theta - \mu(6)}{\phi}}$

$$f(x) = a(x; \phi) e^{\frac{x\theta - h(\phi)}{\phi}}$$

$$f(x;\mu,\sigma^{2}) = \frac{1}{\sqrt{2\pi\sigma^{2}}} e^{-\frac{(x-\mu)^{2}}{2\sigma^{2}}} \quad \mathcal{E}(X) = u$$

$$\alpha(x,\phi) \propto \frac{1}{\sqrt{\pi\sigma^{2}}} \quad \phi = \sigma^{2} \qquad f_{\alpha} = \alpha(x,\phi) e^{-\frac{x\phi-k(\phi)}{\phi}}$$

$$\frac{1}{\sqrt{2\pi\sigma^{2}}} \quad C^{-\frac{1}{2\sigma^{2}}} \left[\begin{array}{c} x^{2} - 2xu + u^{2} \\ -\frac{x^{2}}{2\sigma^{2}} \end{array} \right]$$

$$\frac{1}{\sqrt{2\pi\sigma^{2}}} \quad C^{-\frac{1}{2\sigma^{2}}} \left[\begin{array}{c} x^{2} - 2xu + u^{2} \\ -\frac{x^{2}}{2\sigma^{2}} \end{array} \right]$$

$$\frac{1}{\sqrt{2\pi\sigma^{2}}} \quad C^{-\frac{1}{2\sigma^{2}}} \left[\begin{array}{c} x^{2} - 2xu + u^{2} \\ -\frac{x^{2}}{2\sigma^{2}} \end{array} \right]$$

$$\frac{1}{\sqrt{2\pi\sigma^{2}}} \quad C^{-\frac{1}{2\sigma^{2}}} \left[\begin{array}{c} x^{2} - u^{2} \\ -\frac{x^{2}}{2\sigma^{2}} \end{array} \right]$$

$$\frac{1}{\sqrt{2\pi\sigma^{2}}} \quad C^{-\frac{1}{2\sigma^{2}}} \left[\begin{array}{c} x^{2} - u^{2} \\ -\frac{x^{2}}{2\sigma^{2}} \end{array} \right]$$

$$\frac{1}{\sqrt{2\pi\sigma^{2}}} \quad C^{-\frac{1}{2\sigma^{2}}} \left[\begin{array}{c} x^{2} - u^{2} \\ -\frac{x^{2}}{2\sigma^{2}} \end{array} \right]$$

$$\frac{1}{\sqrt{2\pi\sigma^{2}}} \quad C^{-\frac{1}{2\sigma^{2}}} \left[\begin{array}{c} x^{2} - u^{2} \\ -\frac{x^{2}}{2\sigma^{2}} \end{array} \right]$$

$$\frac{1}{\sqrt{2\pi\sigma^{2}}} \quad C^{-\frac{1}{2\sigma^{2}}} \left[\begin{array}{c} x^{2} - u^{2} \\ -\frac{x^{2}}{2\sigma^{2}} \end{array} \right]$$

$$\frac{1}{\sqrt{2\pi\sigma^{2}}} \quad C^{-\frac{1}{2\sigma^{2}}} \left[\begin{array}{c} x^{2} - u^{2} \\ -\frac{x^{2}}{2\sigma^{2}} \end{array} \right]$$

$$\frac{1}{\sqrt{2\pi\sigma^{2}}} \quad C^{-\frac{1}{2\sigma^{2}}} \left[\begin{array}{c} x^{2} - u^{2} \\ -\frac{x^{2}}{2\sigma^{2}} \end{array} \right]$$

$$\frac{1}{\sqrt{2\pi\sigma^{2}}} \quad C^{-\frac{1}{2\sigma^{2}}} \left[\begin{array}{c} x^{2} - u^{2} \\ -\frac{x^{2}}{2\sigma^{2}} \end{array} \right]$$

$$\frac{1}{\sqrt{2\pi\sigma^{2}}} \quad C^{-\frac{1}{2\sigma^{2}}} \left[\begin{array}{c} x^{2} - u^{2} \\ -\frac{x^{2}}{2\sigma^{2}} \end{array} \right]$$

$$\frac{1}{\sqrt{2\pi\sigma^{2}}} \quad C^{-\frac{1}{2\sigma^{2}}} \left[\begin{array}{c} x^{2} - u^{2} \\ -\frac{x^{2}}{2\sigma^{2}} \end{array} \right]$$

$$\frac{1}{\sqrt{2\pi\sigma^{2}}} \quad C^{-\frac{1}{2\sigma^{2}}} \left[\begin{array}{c} x^{2} - u^{2} \\ -\frac{x^{2}}{2\sigma^{2}} \end{array} \right]$$

$$\frac{1}{\sqrt{2\sigma^{2}}} \quad C^{-\frac{1}{2\sigma^{2}}} \left[\begin{array}{c} x^{2} - u^{2} \\ -\frac{x^{2}}{2\sigma^{2}} \end{array} \right]$$

$$\frac{1}{\sqrt{2\sigma^{2}}} \quad C^{-\frac{1}{2\sigma^{2}}} \left[\begin{array}{c} x^{2} - u^{2} \\ -\frac{x^{2}}{2\sigma^{2}} \end{array} \right]$$

$$\frac{1}{\sqrt{2\sigma^{2}}} \quad C^{-\frac{1}{2\sigma^{2}}} \left[\begin{array}{c} x^{2} - u^{2} \\ -\frac{x^{2}}{2\sigma^{2}} \end{array} \right]$$

$$\frac{1}{\sqrt{2\sigma^{2}}} \quad C^{-\frac{1}{2\sigma^{2}}} \left[\begin{array}{c} x^{2} - u^{2} \\ -\frac{x^{2}}{2\sigma^{2}} \end{array} \right]$$

$$\frac{1}{\sqrt{2\sigma^{2}}} \quad C^{-\frac{1}{2\sigma^{2}}} \left[\begin{array}{c} x^{2} - u^{2} \\ -\frac{x^{2}}{2\sigma^{2}} \end{array} \right]$$

$$\frac{1}{\sqrt{2\sigma^{2}}} \quad C^{-\frac{1}{2\sigma^{2}}} \left[\begin{array}{c} x^{2} - u^{2} \\ -\frac{x^{2}}{2\sigma^{2}} \end{array} \right]$$

$$\frac{1}{\sqrt{2\sigma^{2}}} \quad C^{-\frac{1}{2\sigma^{2}}} \left[\begin{array}{c} x^{2} - u^{2} \\ -\frac{x^{2}}{2\sigma^{2}} \end{array} \right]$$

$$\frac{1}{\sqrt{2\sigma^{2}}} \quad C^{-\frac{1}{2\sigma^{2}}} \quad C^{-\frac{1}{2\sigma^{2}}} \quad C^{-\frac{1}{2\sigma^{2}}} \quad$$

$$\frac{1}{2\pi G^{2}}e^{-\frac{\chi^{2}}{2G^{2}}}\cdot e^{\frac{\chi A}{G^{2}}}-\frac{u^{2}}{2G^{2}}$$

$$\frac{\chi M}{G^{2}}-\frac{u^{2}}{2G^{2}}$$

$$\frac{\chi M}{G^{2}}-\frac{u^{2}}{2G^{2}}$$

$$\frac{\chi M}{G^{2}}-\frac{u^{2}}{2G^{2}}$$

$$F = a(i) e^{-x} \frac{\partial - h(a)}{\partial a}$$

$$E(\gamma) = \beta_0 + \beta_1 \times \cdots$$

$$O = \mathcal{M} = \chi^{T} \beta^{3} \quad E(\gamma) = \chi^{T} \beta$$

$$E(\gamma) = \chi^{T} \beta$$

Binomial Distribution $f(x) = a(x, p) e^{\frac{x \cdot p}{b}}$

$$C(x) = G(x, \emptyset) C \frac{x\theta - k(\theta)}{\phi}$$

$$f(x; n, p) = \binom{n}{x} p^{x} (1 - p)^{n - x} \quad \mathcal{E}(y) = p$$

$$\alpha (x; \phi) \propto \binom{n}{x}$$

$$\gamma = 0 \quad |n| y$$

$$\binom{n}{x} e^{\ln (p^{x} (1 - p)^{n - x})}$$

$$\binom{n}{x} e^{\ln (p^{x})} + \ln(1 - p)^{n - x}$$

$$\binom{n}{x} e^{\ln (p^{x})} + \ln(1 - p)$$

$$\binom{n}{x} e^{\ln (p^{x})} + (n - x) \ln(1 - p)$$

$$\binom{n}{x} e^{\ln (p^{x})} e^{\ln (p^{x})}$$

$$y = e^{\ln y}$$

$$f = a(\cdot) e^{-h(\cdot)}$$

Poisson Distribution $f(x) = a(x; \phi) e^{x\phi - k(\phi)}$

$$f(x) = G(x; \phi) e^{x\phi - k(\phi)}$$

$$f(x;\lambda) = \frac{e^{-\lambda x}}{x!} \qquad E(y) = \lambda$$

$$Q \propto \frac{1}{x!} e^{-\lambda} e^{\ln(\lambda^{*})}$$

$$\frac{1}{x!} e^{-\lambda + \ln(\lambda^{*})} = \frac{1}{x!} e^{-\lambda \ln(\lambda) - \lambda}$$

$$Q = \ln(\lambda) = \lambda^{T} R$$

Common Distributions and Canonical Parameters

Random Variable	Canonical Parameter
Normal	M I dentity link
Binomial	$\log\left(\frac{\mu}{1-\mu}\right)$
Negative Binomial	$\log\left(\frac{\mu}{\mu+k}\right)$ /of if
Poisson	$\log(\mu)$ /of /n
Gamma	$-\frac{1}{\mu}$ in verse
Inverse Gaussian	$-\frac{1}{2\mu^2}$ ~ clouble hurse

u

Random Variable Canonical Parameter

A generalized linear model (GLM) is used to model the association between an outcome variable (of any data type) and a set of predictor values. We estimate a set of regression coefficients β to explain how each predictor is related to the expected value of the outcome.

$$E(X) = g^{-1}(X^{T}B)$$

XTB=B+B,X,+··+BXp

A GLM is composed of a systematic and random component.

Sys: XTB

Randon: Distribution

Random Component

The random component is the random variable that defines the randomness and variation of the outcome variable.

Systematic Component

The systematic component is the linear model that models the association between a set of predictors and the expected value of Y:

$$g(\mu) = \eta = \boldsymbol{X}_i^{\mathrm{T}} \boldsymbol{\beta}$$

X2 Norma/ function RV Whetis /! Y= X X ~ Pois Var (Y) 1/= 2x + S Centrel limit Theorem N > 50 Samplits Distribution X ? 52? xr Wome 1 MLE Liver Regression E do noth

GLMS Link Functions, Estination