Generalized Linear Models

(=1,..., ~ ZX:, V:5 $Y_i = \overline{P}_i + \overline{P}_i X_i + \varepsilon_i$ $\mathcal{E}: \land \mathcal{N}(0, \nabla^{\tau})$ $Y: \mathcal{N}(\mathcal{P}, \mathcal{P}, \mathcal{P}, \mathcal{X}; \mathcal{F})$ $q(Y_i) = \overline{P}_0 + \overline{P}_i X_i$

 $V_{i} = color$ $X_{i} = Wile spon$ $g(X_{i} = SIS) = B + B X_{i}$ $V_{c} = Color$ Y: = Species g(Y:= 2 condar 3) = PotP, X; g(Y:= 2 duch 3) = PotP, X; soagull 3) Normal, Bihorry, Poisson

Learning Outcomes

- Exponential Family of Distributions
- Generalized Linear Models

Exponential Family of Distributions

Exponential Family of Distributions

An exponential family of distributions are random variables that allow their probability density function to have the following form: $y = \int (\Theta)$

$$f(y;\theta,\phi) = a(y,\phi) \exp\left\{\frac{y\theta - \kappa(\theta)}{\phi}\right\}$$

Canonical Parameter

The canonical parameter represents the relationship between the random variable and the $E(Y) = \mu$

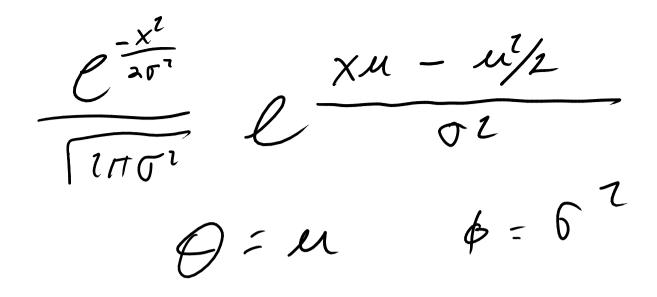
$$\begin{split}
 & = B + B, X \\
 & = A = 2(M)
 \end{split}$$

Normal Distribution $\int_{X} = q(x; \phi) e_{X}^{X \Theta} - k(\phi)$

 $f(x;\mu,\sigma^{2}) = \frac{1}{\sqrt{2\pi\sigma^{2}}}e^{-\frac{(x-\mu)^{2}}{2\sigma^{2}}}$

 $\frac{1}{170^{2}} + \frac{1}{10^{2}} + \frac{1}{10^{2}} + \frac{1}{10^{2}} - \frac{1}{10^{2}} + \frac{1$

 $f(x) = G(x; p) C^{(x)}$



 $G(x|p) = e^{-\frac{x^2}{4r^2}}$

 $k(0) = \frac{\nu'}{n}$

 $\| = \mathcal{M}$ $\overline{E}(Y) = \overline{P}_{o} + \overline{P}_{o} X,$

Binomial Distribution $f(x) = a(x, p) \rho \left(\frac{x - h(p)}{\delta}\right)$

 $\begin{pmatrix} 1 \\ x \end{pmatrix} \approx G(x, p)$ $\begin{pmatrix} n \\ x \end{pmatrix} \begin{pmatrix} n \\ x \end{pmatrix} \begin{pmatrix} n \\ y \end{pmatrix} \begin{pmatrix} n \\ y \end{pmatrix} \begin{pmatrix} p^{*}(1-p)^{n-x} \end{pmatrix}$ $\binom{n}{x} \binom{X \ln(p) + (n-x) \ln(1-p)}{x}$

fcx)= g(x; b) 2 0-k(0)

 $\begin{pmatrix} n \\ x \end{pmatrix} e^{\chi \ln p + n \ln(1-p)} - \chi \ln(1-p)$ $\begin{pmatrix} n \\ x \end{pmatrix} e^{X(\ln p - \ln(1-p))} + n \ln(1-p)$ Y= 1 $\binom{n}{x}$ $\frac{x \ln(\frac{p}{1-p}) + n \ln(1-p)}{1}$ $K(0) = - N |_{u}(1-p)$ $G(x,p) = \binom{n}{x}$ $Q = ln(\frac{p}{1-p})$ Q = l $B_{i} = \left[n \left(\frac{P}{1 - P} \right) + E(y = 1) \right] = \frac{n}{1 + e^{n}}$ $M_{o} = \left[1 + e^{n} \right]$ P(x=1)Success

 $ln\left(\frac{r}{1-p}\right) = logit \qquad n = r_0 + r_1 x$ $\frac{P(y=1)}{P(y=0)} = \frac{SUULESS}{Failure} = odds$

Logistic Regression

Bhory/Binomicl logit link Function

Poisson Distribution $f(x) = a(x; a) C \frac{x - k(a)}{b}$ $f(x;\lambda) = \frac{e^{-\lambda}\lambda^{x}}{x!} \qquad \mathcal{G}(x',\phi) \gtrsim \frac{1}{x'}$ $\frac{1}{X!} \frac{-\lambda}{e} \ln x^{x}} = \frac{1}{x'} \frac{-\lambda + \ln x^{x}}{x'}$

 $= \frac{1}{X'} e^{\frac{x \ln \lambda - \lambda}{t}}$

E(X)-- λ

 $Q = ln(\lambda) = l$ $k(0) = \lambda \quad \alpha(x', 0) = \frac{1}{\chi_1}$

Yn Pois

 $N = ln(\lambda)$

 $\ell' = E(\chi)$

Poisson Regnession

log link function

Common Distributions and Canonical Parameters

Random Variable	Canonical Parameter	
Normal	μ	(-
Binomial	$\log\left(\frac{\mu}{1-\mu}\right)$	E
Negative Binomial	$\log\left(\frac{\mu}{\mu+k}\right)$	
Poisson	$\log(\mu)$	E
Gamma	$-\frac{1}{\mu}$	6
Inverse Gaussian	$-\frac{1}{2\mu^2}$	

Random Variable Canonical Parameter

٠

Generalized Linear Models

Generalized Linear Models

A generalized linear model (GLM) is used to model the association between an outcome variable (of any data type) and a set of predictor values. We estimate a set of regression coefficients β to explain how each predictor is related to the expected value of the outcome.

$$X^{T}B = P_0 + P_1 X_1 + P_2 X_2 + \dots + P_p X_p$$
$$X^{T}B = q(E(Y))$$

Generalized Linear Models

A GLM is composed of a systematic and random component.

Systemtic XTPS

landon component Distribution

Random Component

The random component is the random variable that defines the randomness and variation of the outcome variable.

Systematic Component

The systematic component is the linear model that models the association between a set of predictors and the expected value of Y:

$$g(\mu) = \eta = X_i^{\mathrm{T}} \boldsymbol{\beta}$$