Linear Regression

Learning Objectives

- Matrix Formulation
- Multiple Linear Regression
- Model Assumptions

Matrix Formulation

Matrix Version of Model γ_{i} , $\gamma_$

$$Y_i = \boldsymbol{X}_i^{\mathrm{T}}\boldsymbol{\beta} + \boldsymbol{\epsilon}_i$$

- Y_i : Outcome Variable $\bigvee_i = \bigvee_i \bigvee_{i \in I} \bigvee_{i \in I$
- $\boldsymbol{\beta} = (\beta_0, \beta_1)^{\mathrm{T}}$: Coefficients
- ϵ_i : error term

Data Matrix Formulation $\chi_i : (1 \times i)^T$

For *n* data points

$$Y = X^{T}\beta + \epsilon$$

$$\bigwedge_{X = X^{T}\beta + \epsilon}$$

$$\bigwedge_$$

• $\boldsymbol{\epsilon} = (\epsilon_1, \cdots, \epsilon_n)^{\mathrm{T}}$: Error terms

Least Squares Formula

 $\begin{pmatrix} (Y - X^{\mathrm{T}}\boldsymbol{\beta})^{\mathrm{T}}(Y - X^{\mathrm{T}}\boldsymbol{\beta}) \\ \sum_{i=1}^{n} \begin{pmatrix} \gamma_{i} - (\overline{\beta}_{o} + \overline{\beta}_{i} X_{i}) \end{pmatrix}^{\mathcal{L}}$

Estimates

 $\hat{\boldsymbol{\beta}} = (X^{\mathcal{X}^{n}} X^{\mathcal{X}^{n}})^{-1} X^{\mathcal{X}^{n}} Y^{n \times \ell} Z^{\times \ell}$ $\widehat{\int} = \left(\widehat{f}_{i} \right) = \left(\begin{array}{c} \overline{Y} - \widehat{f}_{i} \overline{X} \\ \overline{Z} \\ \overline{f}_{i} \end{array} \right) = \left(\begin{array}{c} \overline{Y} - \widehat{f}_{i} \overline{X} \\ \overline{Z} \\ \overline{Z} \\ \overline{Y}_{i} - \overline{Y} \right) (\overline{Y}_{i} - \overline{X}) \\ \overline{Z} (\overline{X}_{i} - \overline{X})^{L} \end{array} \right)$

Multiple Linear Regression

MLR

Multivariable linear regression models are used when more than one explanatory variable is used to explain the outcome of interest.

Continuous Variable $P_{+1} < C N$ $100 \quad 99$ To fit an additional continuous random variable to the model, Dver Fitting we will only need to add it to the model:

body mass with span been side
$$Y = \beta_0 + \beta_1 X_1 + \beta_2 X_2$$

Categorical Variable

A categorical variable can be included in a model, but a reference category must be specified.

$$Y = \frac{3}{2} + \frac{3}{2}, (wins) + \frac{3}{2} \frac{1}{2} + \frac{3}{2} \frac{1}{2} \frac{$$

Reference cutegary Seagoll

Fitting a model with categorical variables

To fit a model with categorical variables, we must utilize dummy (binary) variables that indicate which category is being referenced. We use C - 1 dummy variables where C indicates the number of categories. When coded correctly, each category will be represented by a combination of dummy variables.

Example

If we have 4 categories, we will need 3 dummy variables:

	Cat 1	Cat 2	Cat 3	Cat 4
Dummy 1	1	0	0	0
Dummy 2	0	1	0	0
Dummy 3	0	0	1	0

Which one is the reference category?

Cake. 1

Matrix Notation

$$Y_{t} = \boldsymbol{\beta}^{T} \boldsymbol{X}_{t}$$

- β : a column vector of regression coefficients X: a column vector of predictor variables β_{i} β_{i}

 $\widehat{\mathcal{B}} = \left(\begin{array}{c} X \\ X \end{array} \right)^{-1} \left(\begin{array}{c} X \\ X \end{array} \right) = \left(\begin{array}{c} \widehat{\mathcal{B}} \\ \widehat{\mathcal{B}} \\ \widehat{\mathcal{B}} \\ \widehat{\mathcal{B}} \end{array} \right)$ $\underbrace{\mathcal{A}}_{Xn} \xrightarrow{\mathcal{A}}_{N} \xrightarrow{\mathcal{A}}_{N}$

Model Assumptions

Model

 $Y = \boldsymbol{\beta}^T \boldsymbol{X} + \boldsymbol{\xi}$

Model Scatter Plot

Model Assumptions

- Errors are normally distributed
- Constant Variance
- Linearity
- Independence
- No outliers

$$\int_{i} = Y_{i} - Y$$

Errors Normally Distributed

Histogram of Error

У

Constant Variance

Linearity

Linearity

No Outliers

Residual Analysis

A residual analysis is used to assess the validity of the assumptions.