Linear Regression

Learning Objectives

- Matrix Formulation
- Multiple Linear Regression
- Model Assumptions

Matrix Formulation

Matrix Version of Model $y=\beta_{0}+\beta x_{1 i}+\varepsilon_{i}$

$$
Y_{i}=\boldsymbol{X}_{i}^{\mathrm{T}} \boldsymbol{\beta}+\epsilon_{i}
$$

- Y_{i} : Outcome Variable
- $\boldsymbol{X}_{i}=\left(1, X_{i}\right)^{\mathrm{T}}$: Predictors $\quad(x)$
- $\boldsymbol{\beta}={ }^{2 \times 1}\left(\beta_{0}, \beta_{1}\right)^{\mathrm{T}}$: Coefficients
- ϵ_{i} : error term

Data Matrix Formulation

$x_{i}=\left(1 x_{i}\right)$
For n data points

$$
\begin{aligned}
& \underset{n \times 1}{\boldsymbol{Y}}=\boldsymbol{X}^{\mathrm{T}} \boldsymbol{\beta}+\boldsymbol{\epsilon} \\
& n \times 2 \times 1 \quad=n \times 1
\end{aligned}
$$

- $\boldsymbol{Y}=\left(Y_{1}, \cdots, Y_{n}\right)^{\mathrm{T}}:$ Outcome Variable
- $\boldsymbol{X}=\left(\boldsymbol{X}_{1}^{1}, \cdots, \boldsymbol{X}_{n}\right)^{\mathrm{T}}$: Predictors
- $\boldsymbol{\beta}^{\mathrm{P} \times \wedge}=\left(\beta_{0}, \beta_{1}\right)^{\mathrm{T}}:$ Coefficients
- $\boldsymbol{\epsilon}=\left(\epsilon_{1}, \cdots, \epsilon_{n}\right)^{\mathrm{T}}$: Error terms

Least Squares Formula

$$
\lambda^{\left(Y-X^{\mathrm{T}} \boldsymbol{\beta}\right)^{\mathrm{T}}\left(Y-\boldsymbol{X}^{\mathrm{T}} \boldsymbol{\beta}\right)} \begin{aligned}
& \sum_{i=1}^{n}\left(Y_{i}-\left(\beta_{0}+\beta_{1} X_{i}\right)\right)^{2}
\end{aligned}
$$

Estimates

$$
\begin{aligned}
& \hat{\hat{\beta}}=\binom{\hat{\beta}_{0}}{\hat{\beta}_{1}}=\left(\begin{array}{l}
\bar{y}-\hat{\beta}_{1} \bar{x} \\
\overline{\left(\frac{(x}{i}-\overline{-}\right)\left(x_{i}-\bar{x}\right)} \\
\sum\left(x_{i}-\bar{x}\right)^{2}
\end{array}\right)
\end{aligned}
$$

Multiple Linear Regression

MLR

Multivariable linear regression models are used when more than one explanatory variable is used to explain the outcome of interest.

Continuous Variable

$$
p_{+1} \ll n
$$

To fit an additional continuous random variable to the model, we will only need to add it to the model:
overfishing

$$
\stackrel{\text { body mas }}{Y=\beta_{0}+\beta_{1} X_{1}^{\text {Wis sp }}+\beta_{2} X_{2}^{\text {Bern site }}}
$$

As X_{1} increase by lunit, Y will incrase/decrease b_{y} an average of β_{1} units, adjusting for Beeksize

Categorical Variable

$$
\text { Species }= \begin{cases}1 & \text { Seas is } 11 \\ 2 & \text { Coon } \\ 3 & \text { duck }\end{cases}
$$

A categorical variable can be included in a model, but a reference category must be specified.

$$
Y=\beta_{0}+\beta_{1}(w i n s)+\beta_{2} D_{2}+\beta_{3} D_{3}
$$

Species $D_{2}=\left\{\begin{array}{ll}1 & \text { condor } \\ 0 & \text { ow. }\end{array} \quad D_{3}= \begin{cases}1 & \text { duck } \\ 0 & 0 . w\end{cases}\right.$
reference culegary seagull

Fitting a model with categorical variables

To fit a model with categorical variables, we must utilize dummy (binary) variables that indicate which category is being referenced. We use $C-1$ dummy variables where C indicates the number of categories. When coded correctly, each category will be represented by a combination of dummy variables.

Example

If we have 4 categories, we will need 3 dummy variables:

	Cat 1	Cat 2	Cat 3	Cat 4
Dummy 1	1	0	0	0
Dummy 2	0	1	0	0
Dummy 3	0	0	1	0

Which one is the reference category?

Matrix Notation

$$
Y_{i}=\boldsymbol{\beta}^{T} \boldsymbol{X}_{i}
$$

- $\boldsymbol{\beta}$: a column vector of regression coefficients
- \boldsymbol{X} : a column vector of predictor variables

$$
\beta=\left(\begin{array}{c}
\beta_{0} \\
\beta_{1} \\
\beta_{2} \\
\beta_{3}
\end{array}\right)
$$

$$
X=\left(\begin{array}{lll}
1 & & \\
\text { Wins pan } & \\
\text { Are the condor ? } \\
\text { Are they dock? }
\end{array}\right)
$$

Model Assumptions

Model

$$
Y=\boldsymbol{\beta}^{T} \boldsymbol{X}+\varepsilon
$$

- $\epsilon \sim N\left(0, \sigma^{2}\right)$

Model Scatter Plot

Model Assumptions

- Errors are normally distributed

$$
r_{i}=y_{i}-\hat{y}
$$

- Constant Variance
- Linearity
- Independence
- No outliers

Errors Normally Distributed

Histogram of Error

Constant Variance

Linearity

Linearity

No Outliers

Residual Analysis
A residual analysis is used to assess the validity of the assumptions.

$$
\begin{aligned}
& \text { Residuals }=Y_{i}-Y_{i} \\
& \text { Standardized } \\
& \text { studentized } \\
& \text { Hat values } \\
& \text { Cooti's Pistace }
\end{aligned}
$$

