Standard Errors

Linear and Generalized Linear Models

Learning Objectives

  • Standard Errors

    • Linear Regression

    • GLM

  • Sampling Distributions

Linear Regression

Standard Errors

  • Find the variance of the estimate

  • Find the information matrix

  • Use for Inference

Finding the Variance

Estimate for \(\sigma^2\)

\[ \hat \sigma^2 = \frac{1}{n-2} \sum^n_{i=1} (Y_i-\boldsymbol X_i^\mathrm T\hat{\boldsymbol \beta})^2 \]

Standard Errors of \(\beta\)’s

\[ SE(\hat\beta_0)=\sqrt{\frac{\sum^n_{i=1}x_i^2\hat\sigma^2}{n\sum^n_{i=1}(x_i-\bar x)^2}} \]

\[ SE(\hat\beta_1)=\sqrt\frac{\hat\sigma^2}{\sum^n_{i=1}(x_i-\bar x)^2} \]

Standard Errors Matrix Form

\[ Var(\hat {\boldsymbol \beta}) = (\boldsymbol X ^\mathrm T\boldsymbol X)^{-1} \hat \sigma^2 \]

Generalized Linear Models

Large Sample Theory

Let \(X_1,\ldots,X_n\) be a random sample from a distribution with parameter \(\theta\). Let \(\hat \theta\) be the MLE estimator for a parameter \(\theta\). As \(n\rightarrow\infty\), then \(\hat \theta\) has a normal distribution with mean \(\theta\) and variance \(1/nI(\theta)\), where

\[ I(\theta)=E\left[-\frac{\partial^2}{\partial\theta^2}\log\{f(X;\theta)\}\right] \]

Sampling Distributions

Sampling Distributions

\(\phi\) known

\[ \frac{\hat\beta_j - \beta_j}{\mathrm{se}(\hat\beta_j)} \sim N(0,1) \]

\(\phi\) unknown

\[ \frac{\hat\beta_j-\beta_j}{\mathrm{se}(\hat\beta_j)} \sim t_{n-p^\prime} \]