Scatter Plot
Linear Regression
Ordinary Least Squares
Unbiasedness
Linear regression is used to model the association between a set of predictor variables (x’s) and an outcome variable (y). Linear regression will fit a line that best describes the data points.
Simple linear regression will model the association between one predictor variable and an outcome:
\[ Y = \beta_0 + \beta_1 X + \epsilon \]
\(\beta_0\): Intercept term
\(\beta_1\): Slope term
\(\epsilon\sim N(0,\sigma^2)\)
\[ \hat y = 136.73 + 0.015 x \]
For a data pair \((X_i,Y_i)_{i=1}^n\), the ordinary least squares estimator will find the estimates of \(\hat\beta_0\) and \(\hat\beta_1\) that minimize the following function:
\[ \sum^n_{i=1}\{y_i-(\beta_0+\beta_1x_i)\}^2 \]
\[ \hat\beta_0 = \bar y - \hat\beta_1\bar x \] \[ \hat\beta_1 = \frac{\sum^n_{i=1}(y_i-\bar y)(x_i-\bar x)}{\sum^n_{i=1}(x_i-\bar x)^2} \] \[ \hat\sigma^2 = \frac{1}{n-2}\sum^n_{i=1}(y_i-\hat y_i)^2 \]
Both \(\beta_0\) and \(\beta_1\) are unbiased estimators.