Expectations
Variance
Properties
The expected value for a continuous distribution is defined as
\[ E(X)=\int x f(x)dx \]
The expectation of a function \(g(X)\) is defined as
\[ E\{g(X)\}=\int g(x)f(x)dx \]
The variance of continuous variable is defined as
\[ Var(X) = E[\{X-E(X)\}^2] = \int \{X-E(X)\}^2 f(x)dx \]
\(Y=aX+b\)
\(Var(Y) = Var(aX+b) = Var(aX) + Var(b) = a^2Var(X)\)
\(X\sim\mathrm{U(a,b)}\)
\(a<x<b\)
\(f_X(x) = \frac{1}{b-a}\)
\(X\sim\mathrm{U(a,b)}\)
\(a<x<b\)
\(f_X(x) = \frac{1}{b-a}\)
\(X\sim\mathrm{N}(\mu, \sigma^2)\)
\(-\infty < x < \infty\)
\(f_X(x) = \frac{1}{\sqrt{2\pi \sigma^2}}\exp\left\{-\frac{(x-\mu)^2}{2\sigma^2}\right\}\)
\(X\sim\mathrm{N}(\mu, \sigma^2)\)
\(-\infty < x < \infty\)
\(f_X(x) = \frac{1}{\sqrt{2\pi \sigma^2}}\exp\left\{-\frac{(x-\mu)^2}{2\sigma^2}\right\}\)
\(X\sim\mathrm{Beta}(\alpha, \beta)\)
\(0<x<1\)
\(f_X(x)=\frac{\Gamma(\alpha+\beta)}{\Gamma(\alpha)\Gamma(\beta)}x^{\alpha-1}(1-x)^{\beta-1}\)
\(X\sim\mathrm{Beta}(\alpha, \beta)\)
\(0<x<1\)
\(f_X(x)=\frac{\Gamma(\alpha+\beta)}{\Gamma(\alpha)\Gamma(\beta)}x^{\alpha-1}(1-x)^{\beta-1}\)
\(X\sim\chi^2_k\)
\(x>0\)
\(f_X(x)=\frac{x^{k/2-1}\exp\{-x/2\}}{2^{k/2}\Gamma(k/2)}\)
\(X\sim\chi^2_k\)
\(x>0\)
\(f_X(x)=\frac{x^{k/2-1}\exp\{-x/2\}}{2^{k/2}\Gamma(k/2)}\)